This paper examines methods for modeling the spread of infectious diseases. It discusses the features of the generalized compartmental approach to epidemic modeling, which divides the population into non-overlapping groups of individuals. The forecast of models built using this approach involves estimating the size of these groups over time. The paper proposes a method for estimating model parameters based on statistical data. It also introduces a method for estimating confidence intervals for the model forecast, based on a series of stochastic model runs. A computational experiment demonstrates the effectiveness of the proposed methods using data on the spread of influenza in European countries. The results show the model's efficiency in predicting the dynamics of the epidemic and estimating confidence intervals for the forecast. The paper also justifies the applicability of the described methods to modeling chronic diseases.
Keywords: epidemic modeling, computer modeling, compartmental models, SIR, stochastic modeling, parameter estimation, confidence interval, forecast, influenza